
COMMUNICATIONS OF THE ACM January 2006/Vol. 49, No. 1 37

W
hy is securing large
computer systems so
difficult? It’s not just for

the obvious reasons—that
they’re large and publicly avail-

able through the Internet.
Nor is the problem new,

unstudied, or without considerable motivation
among researchers in government laboratories and
in commercial enterprises. Defenders build the vir-
tual walls of computing centers thicker and higher,
while attackers exercise brilliantly diabolical attacks
on weak links, turning systems against themselves
in an arms race that has gone on for as long as
computers have communicated through networks.

So rather than suggest a technological solution or
some clever new way of identifying attackers—of
which there are many fascinating and effective
examples—I examine some basic problems involving
human intuition and how it can influence the secu-
rity design of complex systems. By focusing not only
on understanding how we create and use models to
solve problems, but on how these solutions some-
times fail, it is possible to develop ways to think
about security problems that result in significantly
more robust solutions.

Intuition can be viewed (roughly) as a model for

familiar events. In models, assumptions simplify the
data being looked at to a degree that’s proportional
to the generality of the model. Simplification is both
necessary and built into what makes models useful
for problem solving. As the models provide solutions
for classes of problems, we develop intuition that
encapsulates our familiarity with them. Unfortu-
nately, along with familiarity comes the tendency to
miss changes that are inconsistent with the assump-
tions we made when creating the models. When this
happens, a model may end up causing more harm
than good by coloring how we analyze its results.

What does this have to do with computer secu-
rity? If the basic assumptions behind the intuition
are inconsistent with the actual behavior or nature
of the threat, the system may be less protected than
we think it is, as illustrated by the following exam-
ple: In a classic (circa 1995) network security design,
your opponent is usually viewed as a hostile agent
from outside the network attempting to subvert
defenses via weakness in accessible services. If a host
or service within the network cannot be touched
from the outside, it is considered safe from external
attack. To protect users, no remote host is allowed
to connect to their workstations. Today, a new class
of attack—the client-side attack—has become
increasingly popular and dangerous; examplesLI

SA
 H

A
N

EY

Viewpoint Scott Campbell

How to Think About Security
Failures
Understanding complexity and feedback in security models highlights
the need for better failure modes in solutions.

38 January 2006/Vol. 49, No. 1 COMMUNICATIONS OF THE ACM

include hostile email attachments and Web pages
that allow arbitrary code to be run in light of secu-
rity problems in the Web browser or email client.
With the rise of client-side attacks, a flaw emerges in
the old model; despite avoiding a direct connection
to the outside, users might still be attacked by the
very services they’ve requested [3].

A new attack vector has been created in which
users are transformed into a platform to attack inter-
nal resources without their consent or even their
awareness. Users are no longer passive participants in
the security model; they’ve become the very service
by which entrance is gained into the protected inte-
rior of the network. The point is that the environ-
ment in which a model lives is constantly changing.
If this change is ignored, the model inevitably fails.

UNEXPECTED CONSEQUENCES

C
ompounding the problem of continuing
changes in network and software behavior is
the fact that real-world collections of software,

hardware, and people often act and fail in ways that
are difficult or impossible to predict. While large
groups of people behave in a statistically predictable
manner, the effects of simple changes to an other-
wise well-ordered system do not always result in
predictable results. The exact problem you want
solved may be solved, even as the overall result fails.

This outcome is embodied in the notion of unex-
pected consequences. An example involves user
authentication, an old friend of computer security.
For as long as people have used passwords for
authentication, other people have been interested in

stealing them (credential theft). In order to combat
credential theft, commercial technology introduced
over the past several years creates single-use (one-
time) passwords that replace the traditional idea of a
password. The technology being used to do this is
irrelevant, except in the sense that the credential for
authenticating a user can be used only one time.

One assumption is that neither side of the com-
munication channel has been altered. Sadly, in a
large number of cases of deliberate credential theft
a user logs in from a machine where one side of the
channel has been compromised. For example, one
unsuspecting user, Bob, authenticates and logs in to
Alice’s cluster from his workstation using his one-
time password. Unfortunately, a hostile party, Eve,
has taken over that workstation without Bob’s
knowledge. Bob now begins to work on Alice’s
cluster. Eve can now use this authenticated connec-
tion to attack Alice’s cluster without Bob knowing
that something is happening behind the scenes.
The actual mechanism for doing this is not techni-
cally complex, and many toolkits provide Eve the
needed functionality without much effort on her
part [1, 4].

Considering how a securely authenticated link can
be used to attack Alice’s cluster, it’s important to
note that the problem of credential theft is com-
pletely solved; Eve has access to the authentication
information that Bob types in, even though it is use-
less after the login. By viewing Bob as a service to
access Alice’s cluster rather than as a source of
authentication tokens, Eve has managed to get
around Alice’s mechanism for preventing illegal

Viewpoint

Even if you miss the rock falling into the pool, you might catch
sight of the ripples moving on the surface.

COMMUNICATIONS OF THE ACM January 2006/Vol. 49, No. 1 39

access. Further, unless Alice is prepared to deal with
this new threat, she will face an attack far more sub-
tle and dangerous than simple credential theft
(which she has years of experience detecting and cor-
recting).

EVOLVING ECOLOGY

W
hat these examples of security problems
have in common is that in resolving a spe-
cific vulnerability, something more compli-

cated took its place. The act of removing a
vulnerability puts pressure on the entire ecology
around the system. Rather than just disappearing,
attackers eagerly evolve to take advantage of what-
ever opportunities remain. Securing a system exerts
pressure on attackers, forcing changes in their for-
merly successful behavior, along with the creation
of novel and previously unexplored attack patterns
to take advantage of still unprotected resources.
These resources—vulnerabilities and unexplored
options—have always been there, it’s just that there
hasn’t been sufficient motivation to use them, since
there were always simpler ways to get by.

Security design must recognize that enhancements
are the driving force behind new intrusion tech-
niques, rather than simply being a means of remov-
ing vulnerabilities. The importance of this point
cannot be overemphasized.

How does this relate to my earlier discussion of
models? If Alice tries to protect her system adminis-
trators by using a firewall to isolate them from con-
tact initiated from the outside, Eve may make short
work of Alice’s defenses by sending an email message
that directs one of their vulnerable Web browsers to
a hostile Internet site. Alice knows that while there is
utility in blocking connectivity, it is equally impor-
tant to screen email and Web content and keep
workstation and application software patched.

RESOLUTION

H
ow could this insight help design more secure
systems? First, the models and assumptions
used to develop security solutions must be

grounded in real-world data and account for the pos-
sibility of failure due to unexpected behavior, both
human and technological. In addition, resolving one

security vulnerability might cause changes (often sig-
nificant and unpredictable) in the distribution of
attack methods.

Any design will fail at some point [2]. However, if
you design with the inevitability of failure in mind,
when it happens you’ll at least have a chance to find
out about it. The key is designing systems that are
able to fail gracefully. Determining that there is a
problem when it happens is the best option for min-
imizing damage, besides preventing it outright. Solu-
tions must be designed to make a great deal of noise
when they fail or misbehave. Most systems end up
doing something unexpected. When they do, you’ll
want to know about it. Even if you miss the rock
falling into the pool, you might at least catch sight of
the ripples moving on the surface.

So, what should Alice do to augment her new
one-time password software? She knows that Eve will
not relent, so assuming that the authentication sys-
tem is likely to fail will allow for many more
options. Perhaps the communication application
Bob uses to log in is now instrumented to audit user
activity. Perhaps system accounting provides feed-
back for unusual behavior. This may not stop the
attack, but it will be possible to detect and respond
when the unexpected inevitably happens.

References
1. RD (rd@thehackerschoice.com). Writing Linux Kernel Keylogger.

Phrack 11, 59 (June 2002); www.phrack.org/phrack/59/p59-0x0e.txt.
2. Schneier, B. Secrets & Lies: Digital Security in a Networked World. Wiley

Computer Publishing, New York, 2000.
3. Wang, Y.-M. Strider HoneyMonkeys: Active client-side honeypots for

finding Web sites that exploit browser vulnerabilities. Part of Works in
Progress at the 14th Usenix Security Symposium (Baltimore, July
31–Aug. 5, 2005); www.usenix.org/events/sec05/wips/wang.pdf and
research.microsoft.com/HoneyMonkey/.

4. Melstorm (melstorm@storm.net.nz). Trust Transience: Post-Intrusion
SSH Hijacking Melstorm. Presentation at Defcon 14 (Las Vegas, Aug.
4–6, 2005); opensores.thebunker.net/pub/mirrors/blackhat/presenta-
tions/bh-usa-05/BH_US_05-Boileau/metlstorms_sshjack-1.02.tar.gz.

Scott Campbell (scampbell@lbl.gov) is a computer security
analyst at the National Energy Research Scientific Computing Center
at Lawrence Berkeley National Laboratory, Berkeley, CA.

© 2006 ACM 0001-0782/06/0100 $5.00

c

